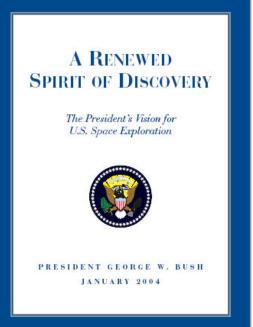


exploration

... the essence of the human spirit.

Frank Borman



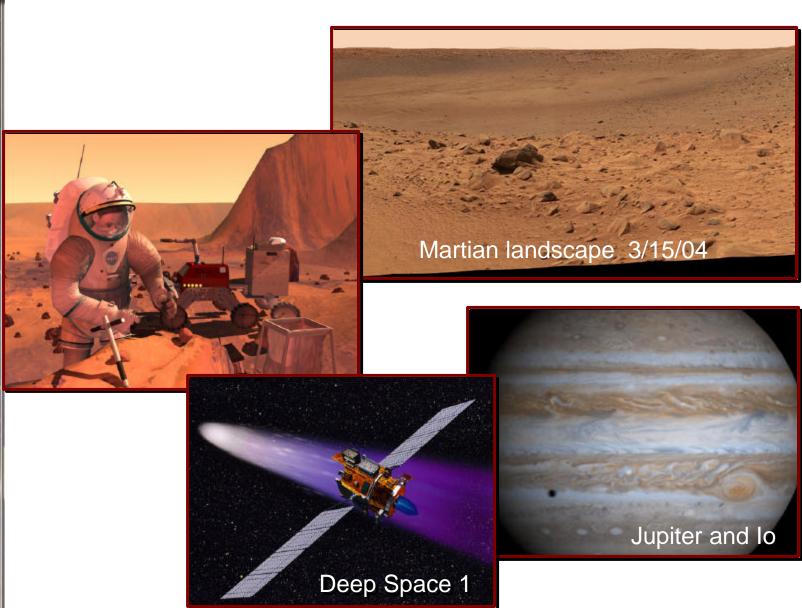
Our Inspiration and Our Champions

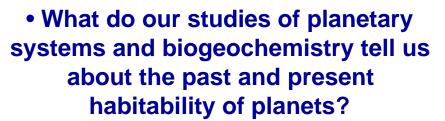
The Vision for Space Exploration Presidential Direction to NASA, January 2004

- Implement a <u>sustained</u> and <u>affordable</u> human and robotic program to explore the solar system and beyond
- Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations;
- <u>Develop the innovative technologies</u>, <u>knowledge</u>, and <u>infrastructures</u> both to explore and to support decisions about the destinations for human exploration; and
- Promote <u>international and commercial</u> <u>participation</u> in exploration to further U.S. scientific, security, and economic interests.

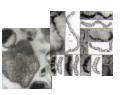
The Vision's Evolutionary Strategy Demonstrate Capability, Extend Exploration

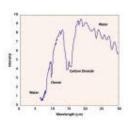
- Technology advancement reduces mission costs and supports expanded human exploration
- Systems testing and technology test beds to develop reliability in harsh environments
- Expand mission and science surface operations experience and techniques
- Human and machine collaboration: Machines serve as an extension of human explorers, together achieving more than either can do alone
- Breaking the bonds of dependence on Earth: (e.g./Life Science/Closed loop life support tests)
- Power generation and propulsion development and testing
- Common investments in hardware systems for Moon, Mars and other space objectives


Exploring the Moon Operational Demonstrations Prepare for Mars

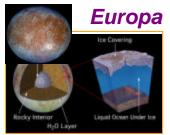

Exploring Mars and Beyond Expand Operations Experience & Techniques

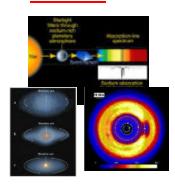
The Vision's Science All Destinations Play a Role


Search for Life as a Focus



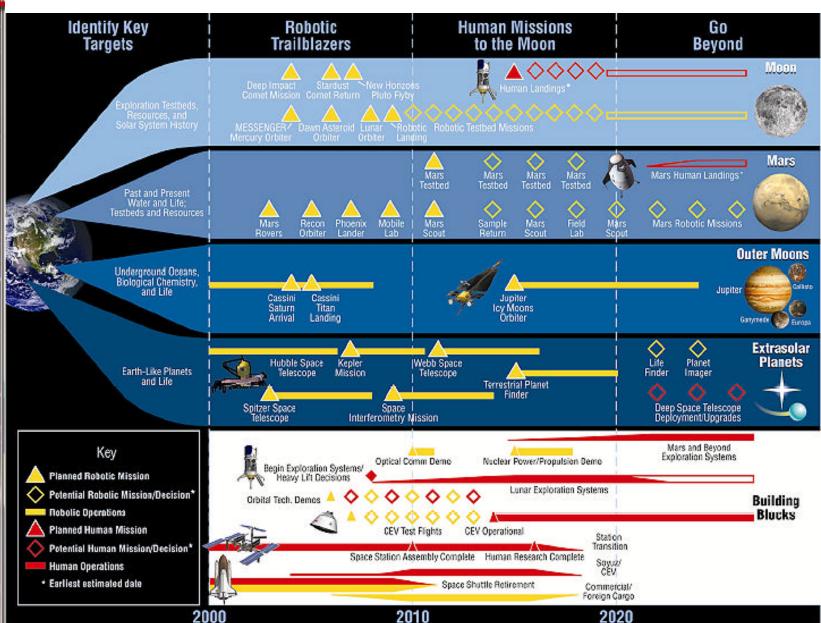
- What signatures would suggest evidence of organic activity or habitability in planetary systems?
- Have planets or moons in our Solar System supported life in the past or the present?
- How abundant are planets around other stars and do they show evidence of habitability or life?





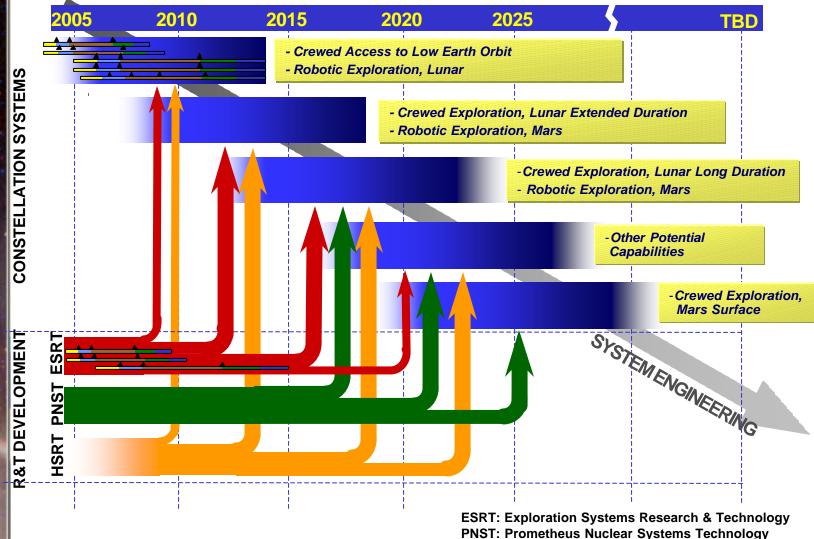
Outer Planets

Extra-Solar **Planets**



LORAL

The Vision's Scope Across Multiple Worlds


Exploration Milestones

Incremental milestones demonstrate success:

- 2008: Initial flight test of CEV
- 2008: Launch first lunar robotic orbiter
- 2009-2010: Robotic mission to lunar surface
- 2011 First Uncrewed CEV flight
- 2014: First crewed CEV flight
- 2012-2015: Prometheus-1 Nuclear Demonstration
- 2015-2020: First human mission to the moon

Spiral Development Acquisition Strategy Permits Optimal System-of-Systems Development

HRST: Human System Research & Technology

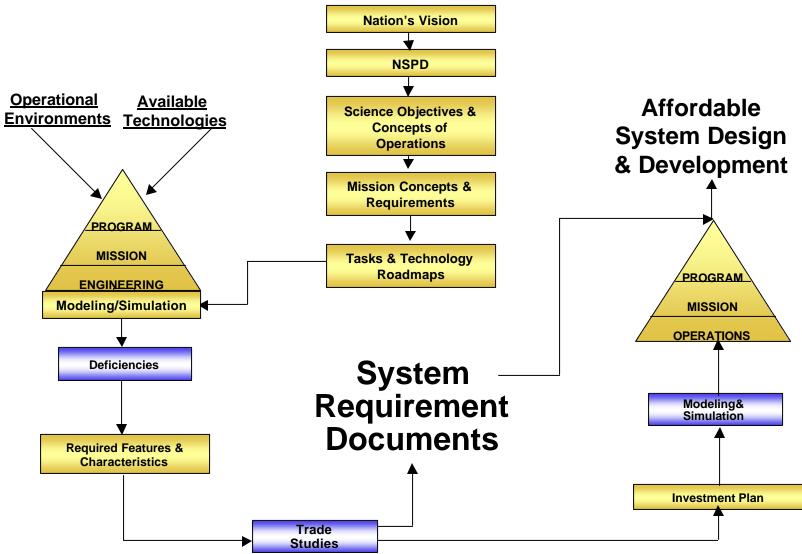
System-of-Systems Integration Multiple Elements & Interfaces

Transit and Launch Systems

The Human: an
Essential Element
of the
System of Systems



Surface and Orbital Systems


Technology Options

Commonality/Evolvability
For Future Missions

Strategy-to-Task-to-Technology Process Defining Requirements, Planning Investments

Rigor in Requirements Definition Methodical Approach to System-of-Systems

Broad Trades

Architectural Variants (Examples)

- Moon Short Stay High-Earth Orbit
- Moon Long Stay
 Libration Points
- Global Access
- Single Site
- · Mars Short Stav Mars Long Star
- Multiple Sites
- Mars Orbit

Technology Infusion

- (Examples) Chemical Open Loop
- Nuclear
- Fuel Cells
- Solar
- Storables Cryogenics Thermal Protection
- ECLSS Closura

Operational Concepts (Examples)

- Pre-Deploy Convov
- All-Up
- Surface Stav
- Lunar Orbit Libration Point
- Abort Options Staging Altitude
- Tandum

Effectiveness Safety

Extensibility Affordability

Focused Trades

Architectural Variants (Examples)

- Launch Constraints
 Plane Change
- Return Strategy
- Tandem / Convov
- Staging Altitude
- Surface Strategy

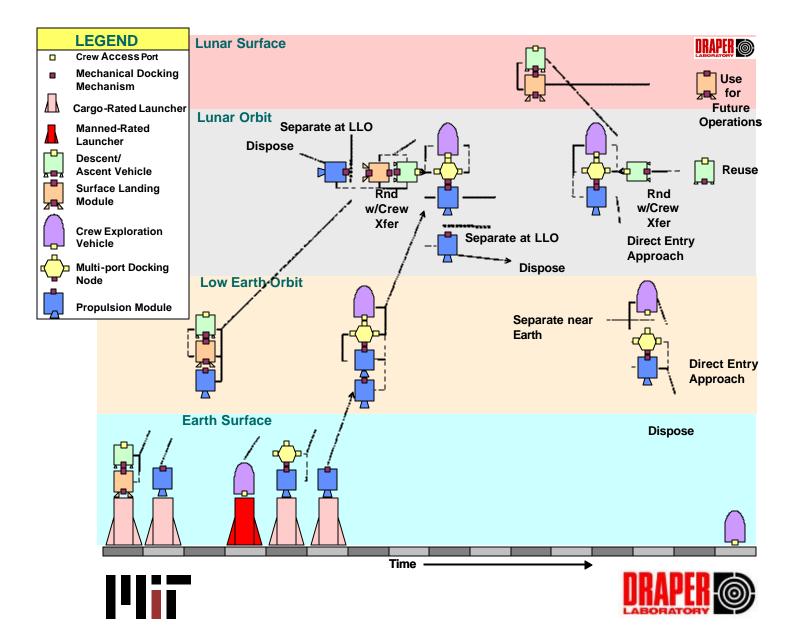
Technologies & Sensitivities (Examples)

- Propellants
- Power
 - Payload Returned
- Crew Size
- Surface stav
- Launch Frequency
- Radiation Shielding

Payload Down

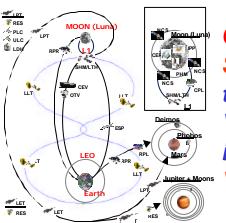
Mission Capture (Examples)

- Lunar Short Stay
 - Libration
- Lunar Long Stay Polar / Equatorial
- Mars Staging Mars Return
- Global Access
- ISS (TBD)

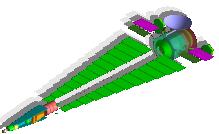

OAG/STT Decision Panel

Concept of Operations and Draft Requirements

MIT Contributions to S-T-T Concept Exploration & Refinement Figures of Merit MIT/Draper Core Team Value IPT Value Risk/Safety Sargent [Rebentisch] Crawlev Fuhrman **Objectives** deLuis Policy Stakeholders **Affordability** Henderson Robustness **Policy Robustness Enterprise Arch. System Engineering Integration Team System Engineering Management Team** Co-Chairs: Henderson deLuis **Cost IPT** Parrish, Moran, Kong, Loureiro, Kochocki [Moran] **Transportation** Mission/Surface Ops. CEV Information [Wooster] [Byrne/Lamamy] [Barton] [Inalhan] Safety/Risk IPT [Leveson] **CEV IPT Transportation** Surface Ops **Information Define Surface Define Trans.** Ops. Parameter Define Information. Define CEV. **Parameter Space Parameter Space** Parameter Space **Space Develop Info** Develop CEV. Develop Trans. **Develop Surface** CONOPS CONOPS CONOPS Ops. CONOPS Instances Instances Instances Instances **Trade studies Trade studies Trade studies Trade studies Analyses Analyses Analyses Analyses**



MIT Contributions to S-T-T Baseline CE&R Architecture

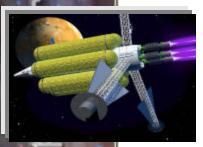


ESMD Program OverviewCapability Development Programs

Constellation Systems will develop an evolving System-of-Systems that supports exploration at the Moon, Mars, and beyond, in support of the Vision for Space Exploration. Near-term activities include development of a Crew Exploration Vehicle for LEO operations and lunar transport.

The Prometheus-1 Project will demonstrate nuclear fission-powered systems in deep space, through a tour of Jupiter's icy moons to search for possible sub-surface oceans.

The Hubble Robotic Servicing Mission is a program focused on safely de-orbiting and extending the service life of the Hubble Space Telescope. Key technologies include autonomous rendezvous & docking, and on-orbit servicing robotics.



Exploration Systems Research & Technology is a strategic, requirements-driven program focused on making systems more affordable, reliable, effective and flexible. Technology is developed through a lifecycle, from low-TRL advanced research through technology maturation and demonstration.

Centennial Challenges is a program of contests that establishes cash awards to stimulate innovation and competition in technical areas of interest to Civil Space and Aeronautics.

Prometheus Nuclear Systems & Technology is a strategic systems & technology development program that will enable revolutionized space exploration and science through nuclear electric power and propulsion capabilities.

Human Systems Research & Technology is a requirementsdriven program focused on reducing long-duration mission cost and risk in the areas of crew health & performance and life support & habitation including EVA.

Implementing the Vision... Concept Exploration & Technology Progress

- Lessons-learned reviewed and incorporated into management process
 - Agency-wide, Orbital Space Plane, Next Generation Launch Technology
 - Lessons-learned incorporated into Risk Management Plan
- Released Request for Information (May 04)
 - Over 1000 responses
 - Incorporated into Concept Exploration & Refinement (CE&R) Broad Agency Announcement (BAA)
- Released CE&R BAA (Jun 04)
 - 37 proposals received; down-select to 11; on-board 8 Sep for 6 months to validate acquisition and requirements strategies
- Released Intramural Call for Proposals (ICP) on System-of-Systems
 Technologies for Spiral 2 & beyond (May 04)
 - 1300 Notices of Intents (NOIs) received; initial down-select to 137 full proposals; 47 projects selected (Jul 04)
- Released Extramural BAA on System-of-Systems Technologies for Spiral 2 & beyond (Jul 04)
 - 3700 NOIs received; initial down-select to 500 full proposals; ~ 100 projects to be selected (Nov 04)

Implementing the Vision... System Development Accomplishments

- Constellation System-of-Systems, CEV Preliminary Level 1 requirements and Concepts of Operations developed utilizing rigorous process:
 - Strategy-to-Task-to-Technology (STT) process adopted as basis for prioritized investment strategy
 - Operational Advisory Group (OAG) established, populated, and led by operational users (astronauts, flight directors, logisticians, etc.) to validate requirements and priorities
 - Spirals 1, 2, 3 Requirements Identified (Decreasing definition from Spiral 1 to Spiral 3)
- CEV RFP process initiated with target award date of Aug 05
 - CE&R Contractor Teams influencing tech requirements & acquisition strategy, including potential commercial roles
- Prometheus-1 (JIMO) spacecraft contract awarded September 20
- HSRT successfully demonstrated critical technologies
 - Advanced Ultrasound diagnostic tool demonstrated "Telemedicine" from ISS
 - E-nose technology for air quality event monitoring successfully validated on ISS
- Hubble Robotic Servicing Mission contract awarded October 1

Exciting Missions Ahead International Space Station

Critical Human Factors Studies Onboard

Harmful Radiation Effects

- Tissue degeneration
- Carcinogen exposure

Physiological Changes

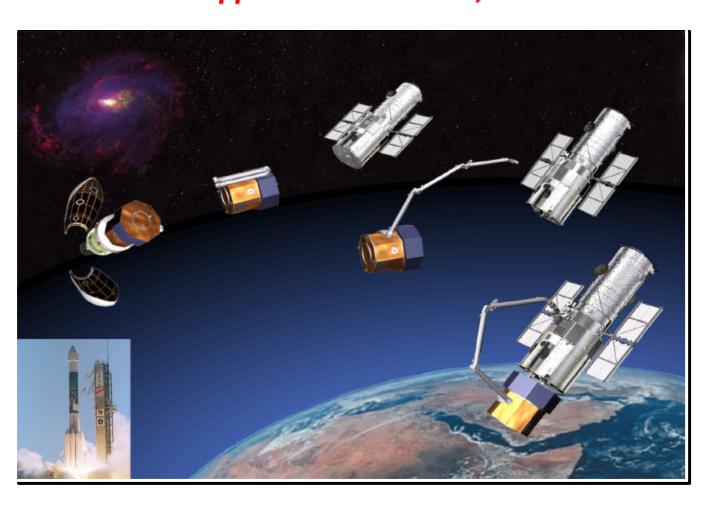
- Cardiac arrhythmia
- Osteoporosis

Acute Medical Problems

- Toxicity
- Ambulatory health problems

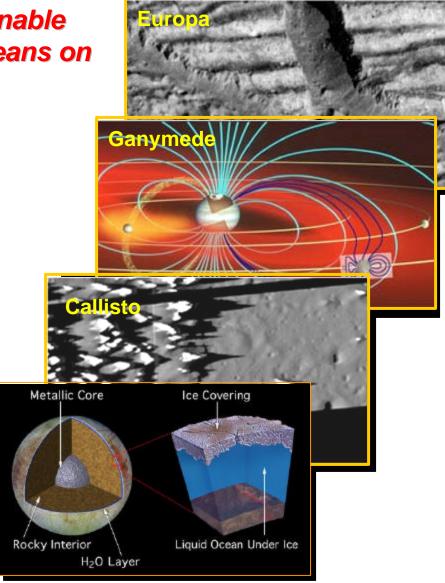
Behavioral Problems

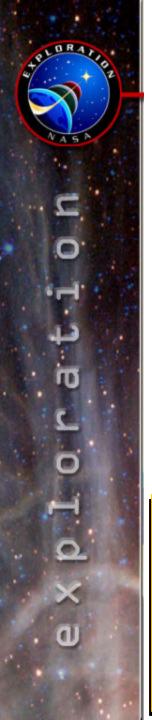
- Disorientation
- Sleep problems



Exciting Missions Ahead Hubble Robotic Servicing Mission

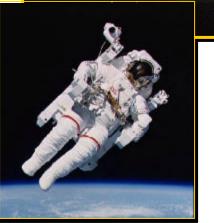
• Mission Profile Supports Safe De-orbit, Life Extension





Exciting Missions Ahead Prometheus-1

 Multi-mission power and propulsion technologies enable search for sub-surface oceans on Jupiter's moons

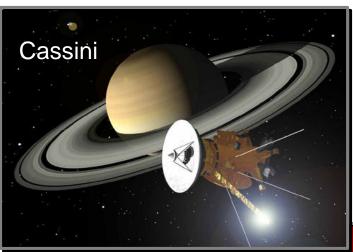


Exciting Missions Ahead New Era of Human-Robotic Operations

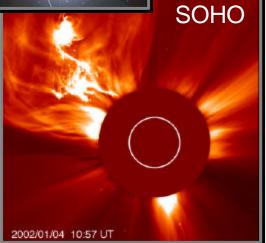
 New operations concepts leverage the capabilities of humans and robots where they are best-suited

Contributing to the Vision Cross-Agency Integration

- Transit & Launch Systems for Crew Transport & Support
- Human Spaceflight
- Surface & Orbital Systems
- Supporting Basic & Applied Research
- Technology Development for Long Duration Habitation
- Operations Demonstrations

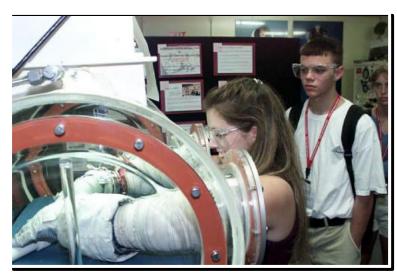


Contributing to the Vision


International Cooperation

• We will engage other nations to further our exploration goals

International Space Station



Contributing to the Vision Industry & Academic Partnership

- Leverage our Nation's young and growing talent in science and engineering
- Develop clear and consistent messages, showing a united front among partners
- Engage broader communities
- Deliver on commitments, being responsible stewards of taxpayer dollars
- Educate, inspire, and motivate the public

Realizing the Future

Foster and sustain the exploration culture across generations

- New frontiers yield scientific and commercial opportunities
- Pathfind new approaches to research, development, risk management
- A constant impetus to educate, train, and develop industrial base

Identify, develop, and apply advanced technologies to...

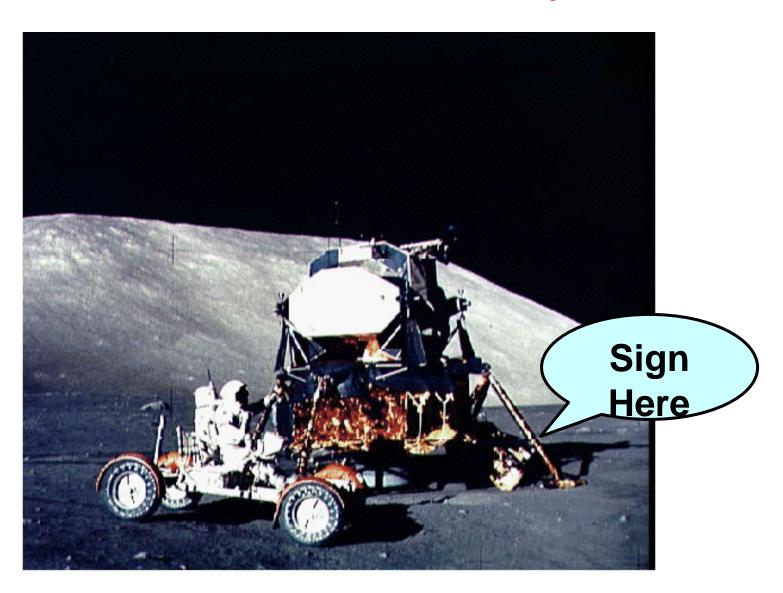
- Enable exploration and discovery
- Allow the public to actively participate in the journey
- Translate the benefits of these technologies to improve life on Earth

Harness the brain power

- Engage the nation's science and engineering assets
- Motivate successive generations of students to pursue science, math, engineering and technology
- Create the tools to facilitate broad national technical participation

One Step at a Time Affordable, Sustainable, Focused, Achievable

• NASA has the talent, experience and leadership to fulfill our destiny as explorers



"We Leave As We Came..." Your Role in the Next Era of Exploration

Explore With Us!

www.nasa.gov